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MONTE CARLO METHOD FOR THE CALCULATION OF TRANSPORT
PROPERTIES IN A LOW-DENSITY IONIZED GAS
by Charles M. Goldstein

Lewis Research Center

SUMMARY

An introduction to the general Monte Carlo method is presented, along with a dis-
cussion of its scope of application to plasma physics. This is followed with a heuristic
sketch of the method. The problem of electron flow through a perfect Lorentzian gas in
a parallel-plane diode is then formulated. The Monte Carlo solution is discussed in de-
tail along with the relevant computational techniques employed. (Pertinent concepts
from the theory of random variables are included in an appendix. )

The effects of mean free path on current-voltage characteristics, density distribu-
tion, and potential distribution are presented for two cases - monoenergetic and thermi-
onic emission. Results indicate that electron-neutral elastic collisions can have a sig-
nificant effect on the current-voltage characteristics for electrode separations as small
as one mean free path in the case of thermionic emission, and one-half mean free path
in the case of monoenergetic emission.

INTRODUCTION

A major difficulty in the study of low-density ionized gases is the lack of suitable
analytical methods for determining the effects of collisions. ''Low density'' is here
defined as those situations in which a characteristic dimension is of the order of a few
mean free paths, that is, the regime wherein neither a collisionless nor a continuium
approximation can be expected to represent the actual situation. This regime is of im-
portance in low-pressure thermionic diodes, plasma sheaths (probe theory), ion engines,
and cross-section measurements.

Much effort has been expended to obtain solutions of the Boltzmann transport
equation for low-density neutral gases (ref. 1). Little work has been done on the
extension of these methods to low-density ionized gases. Recently, however, Sockol



(ref. 2) has succeeded in numerically integrating the Boltzmann transport equation for
a particular low-density ionized gas problem. Unfortunately, the numerical integration
is very difficult for even the simplest hard-sphere collision cross section; the feasi-
bility of extending this method for more complex collision cross sections has not as yet
been investigated.

This report presents a new method for determining analytically the transport prop-
erties in a low-density ionized gas for an arbitrary collision cross section. Results
with this method are given for two electron transport problems. The method proposed
is, essentially, a consistent-field Monte Carlo method. Since the Monte Carlo method
has not been widely applied in the fields of plasma physics or ionized gases, a brief
introduction is presented; a review of the pertinent random variable theory is given
in appendix A. The ability to use this method effectively is strongly dependent on
numerical procedures and ''tricks of the trade.'' A section is therefore included on
the various computing techniques; in addifion, a complete program listing plus selected
flow charts are to be found in appendix C. A discussion of two important computing
programs is presented by their author, H. Renkel, in appendix B.

The general method of calculating transport properties is applied herein to the
problem of electron transport in a perfect Lorentzian gas with a hard-sphere collision
cross section; in particular, the method is employed to obtain electron flux character-
istics in a plane-parallel diode including the effect of electron-neutral collisions.

Langmuir (ref. 3) published the first correct solution to the effect of space charge
and initial velocities on the potential distribution and thermionic current between
parallel-plane electrodes for no collisions (vacuum diode). He also studied (ref. 4)
the problem of diffusion of electrons back to the emitter for the case of a very small
mean free path. These results are extended herein to the case of electron-neutral
collisions for which the mean free path is not necessarily small with respect to the

interelectrode separation.

MONTE CARLO METHOD

General Description

The Monte Carlo method is, in general terms, a technique for solving physical and
mathematical problems by using random sampling. Although the term '"Monte Carlo
method'' has been subjected to various interpretations, an acceptable statement of the
method as applied herein has been given by Donsker and Kac (ref. 5): ''The Monte Carlo



approach consists in permitting a 'particle® to play a game of chance, the rules of the
game being such that the actual deterministic and random features of the physical proc-
ess are step by step exactly imitated by the game. By considering very large numbers
of particles, one can answer such questions as the distribution of the particles at the end
of a certain period of time, the number of particles to escape through a shield of a spe-
cific thickness, etc. One important characteristic of the preceding approach is that the
functional equation describing the diffusion process is bypassed completely, the proba-
bility model used being derived from the process itself. "

A short history of Monte Carlo applications is to be found. in the paper by Goertzel
and Kalos (ref. 6). An excellent review of the basic principles is given in reference 7,
and an extensive bibliography has recently been compiled by Kraft and Wensrich (ref. 8).
This method has, in recent years, been employed with considerable success to a wide
variety of problems, most notably in the area of nuclear shielding problems (viz., neu-
tron transport). These latter problems are linear in the sense that the neutron trajec-
tories are independent of the neutron density. More recently, the method has been ex-
tended to certain nonlinear problems in radiation transport (ref. 9).

There have been some applications of the Monte Carlo methods to the investigation of
one-dimensional electron (ion) diodes, but these studies are more often referred to as
computer-simulated solutions, or ''‘computer experiments.'' The difference in termi-
nology reflects the fact that these studies approximate the physical model by a finite
number of current sheets, which are then followed deterministically through all mutual
interactions by the computer. The Monte Carlo method, on the other hand, most fre-
quently implies repeated, stochastically independent trials. A short history of the afore-
mentioned computer experiments is to be found in the paper by Burger (ref. 10). These
studies do not take collisions into account, nor does it seem practical to do so because
of the demands this type of analysis would impose on computer storage requirements.

Itoh and Musha (ref. 11) employed a Monte Carlo calculation to determine the ion-
ization and excitation coefficients of electrons in a uniform electric field E for given
gas pressure P. They also computed drift velocity and mean energy for several values
of E/P. Although the authors state that this method can be extended to strong, non-
uniform electric fields, it cannot provide a suitable model from which diode character-
istics could be obtained since space-charge effects, which introduce a nonlinearity, have
not been considered.

Just as the nonlinearity in the radiation transport problem is characterized by a
single parameter, the temperature (ref. 9), so the nonlinearity in the charge-particle
transport problems is characterized by the potential. TUnlike the photons in the former
problems, however, the charged particles experience a body force proportional to the
first derivative of the potential.



Heuristic Sketch of the Method

First the relatively simple problem of the attenuation of a molecular beam by a
homogeneous gas shall be considered. If the actual experiment is performed for a given
emission flux 1"0 and the flux reaching the target (or collector) I"C is measured, it is
reasonable to interpret the ratio I‘c/ T, as the probability that a unit of emitted flux
will reach the target. If a knowledge of the scattering probabilities of a single molecule
passing through the same gas is assumed, it is possible on a computer to follow a cer-
tain number No’ one at a time, and tally the number NC that reach the collector (the
others are scattered back to the emitter). Then the ratio Nc/ N, would be an approxi-
mation to the experimentally determined Fc/ I',. Since the experimental fluxes may be
of the order of 1018 particles per square centimeter per second or higher, it is not con-
ceivable, even in this relatively simple situation, to ''do the experiment'* on the com-
puter. As N0 becomes larger, however, the approximation Nc/ N0 becomes better.
Statistical analysis provides a means of estimating how good the approximation is.

For the case of charged particles flowing through a gas, the situation is complicated
by the nonlinearity introduced by the space charge. That is, the flow of charged par-
ticles is not only influenced by collisions with the gas molecules, but also by the poten-
tial field; the potential field, itself, is a function of the density of charged particles.
This is the situation considered herein. To start, for a given collector potential #(L)
a potential distribution ¥#(x) is assumed. An approximation to the current reaching the
collector, Nc/ No’ is then obtained as in the molecular beam case. In addition, however,
the contribution to the density, at preselected data points, of each charged particle is
also tallied. These densities are used to solve Poisson's equation for a new potential
distribution. The process is then repeated (i.e., iteration is performed on the potential
distribution) until the potential distribution ''converges.!" Convergence must here be
considered only in a statistical sense; when further iterations produce only random
fluctuations in the potential distribution, ''convergence'' is assumed. Random fluctua-
tions are, of course, to be expected, since only a small statistical sample N0 of the
total flux is considered. After convergence has been achieved, succeeding iterations
may be considered, in the parlance of statistical analysis, as independent trials; each
resulting approximation Nc/ No may be considered a sample mean (appendix A). An
analysis of the sample means provides a way of estimating the accuracy of the result.

FORMULATION OF ELECTRON DIODE PROBLEM

The physical model of an infinite parallel-plate diode is depicted in figure 1. In the
same figure the types of scattering that may occur for a monotonic potential distribution



are shown. In figure 2 a typical potential
distribution is shown. When a potential

Emitter Collector

Forward scattering;
4

minimum exists as indicated in this figure,
a certain portion of thermionically emitted
electrons will be rejected back to the
emitter even in the absence of collisions.
The existence of a potential minimum less
than both emitter and collector potentials

Backward “.
scattering ~

defines the space-charge-limited regime
of diode operation.
- The perfect Lorentzian gas assump-

Potential~ - . . . s psos
-7 tion implies an infinite mass target par-

Oe—‘*»-—”— — ticle, and hence the laboratory system be-
Spatial coordinate, x comes equivalent to the center of mass
Figure 1. - Diode model and types of scatter. system. Since hard-sphere collisions
result in isotropic scattering in the center
g&!zﬁglf of mass system, the equivalence of the
(L) two systems in this case results in iso-
tropic scattering in the laboratory system.
Isotropic scattering means, by defini-
- tion, that the probability of scattering into
- unit solid angle is the same for all angles.

{
i The probability distribution function

I ! minimum_

Potential distribution, 7 {(x)

0 Xminimum

_ (hereafter, p.d.f., see appendix A) is
Spatial coordinate, x

therefore the constant 1/47. Hence the
probability of scattering into solid angle
dQ is dQ/4n. In terms of the scattering angle ¢, this becomes

Figure 2. - General potential distribution,

d_Q = sin 9 do (1)
47 2

Consequently, the p.d.f. of scattering into angle d¢ is simply sin 6/2.

The assumption of hard-sphere collisions also implies a constant mean free path A.
Now if that group of electrons that has just collided is considered, then the fraction of
these electrons that will suffer collisions in distance L, is (ref. 12, p. 102, eq. (98a))

1-e c (2)

where



2 =s/L

a=L/

and s is the path length and L the electrode spacing.

Thermionic Emission

For this case it is assumed that electrons are emitted with a half-Maxwellian

velocity distribution
-(u2 + V2)
f(u, V) du dV = (4/y7T)Ve du dv

where
-

u= vx/ ¥V2kT/m

\
- v§+v§

Y2kT/m

The one-dimensional Poisson's equation, in dimensionless variables, becomes

¢'(y) = C n(y)
where
\
_ X
y - J—
L
ev
qp = —
kT }
_n
n R
ng _J
and

(3)

(4

(5)

(6)

(7



C = 8(n/2%T)%/ 2mY/ Zeg L2 (8)

Monoenergetic Emission
The analysis for monoenergetic emission directly parallels that for thermionic col-

lision with a few minor changes. The dimensionless variables u, V, and ¢ are now
defined as

v-— Y2 & (9)

The constant parameter C in Poisson's equation (eq. (6)) becomes

greL2y_
C=—__20 (10)

3
mv
MONTE CARLO SOLUTION
Thermionic Emission
Initial conditions. - It must be emphasized that the test ''electrons'' are not chosen
from the half-Maxwellian distribution (eq. (4)). Although test '"electrons' are men-

tioned, the statistics are obtained for units of electron flux - not units of charge. Hence,
the initial velocities must be chosen from the distribution of flux in velocity space

2. 2
V7 uf(u, V) du dV = 4uve (0" + V") duav (11



from equation (4). Since the u and V components of velocity are independent, the
respective marginal distributions (see ref, 13, p. 287) Fu(V) and FV(u) can be
obtained:

00 Vv 2 2
F (V) = j(; du fo awve W+ gy (12)

0 u 2 2
~(u%+V
Fy(u) = fo av fo auve~(0+V7) gy (13)

But these marginal distributions are simply the cumulative distribution functions (here-
inafter, c.d.f.) for u and V, respectively. From equations (A16) and (A15),

u2 = -ln(Ru)
(14)
V2 = -1n(R,V)

where R and Ry are random numbers between 0 and 1. Equations (14) are then used

to determine the initial velocities of each test electron.
Distance to collisions. - The distance to collision must be obtained at the start of

each new electron trajectory (i.e., on emission from emitter or after a collision).

Equation (2) can also be interpreted as the probability that an electron will suffer a
collision in a distance ¢ ={,. This, however, is just the definition of the c.d.f{. F(L,)
(see appendix A). Hence, from equation (A16) can be obtained a relation between the
random numbers R 0 and the distribution of path length to collision:

—aﬂc

where

0 = -<l> In(1 - R,)

o

; <l> In(R,) (16)

o

Scattering angle. - If a collision takes place, then the scattering angle 6 must be




determined. From the p.d.f. (eq. (1)), the c.d.f. F(9) can immediately be obtained
(compare eq. (A3) in appendix A):

F(g) = 1_-%_9 (17)

But in this case the c.d.f. can take on the values -1 = F(9) =1 (forward and backward
scattering). Hence, in order to choose randomly from this range (see eq. (A16)), let

cos g =1- ZRQ (18)

where once again 0 = RB = 1. Equation (18) is the final result since only c0529 (and
sin29 =1- cosze) is of interest in the actual computations.

Charge density. - The data points y; are selected by the curve-fitting subroutine
(see appendix B where Vi corresponds to the arguments x a)' The contribution of the
k! test electron (unit of flux) of velocity uk(y) to the charge density at each y; is

. 1
n(y;) = — - — (19)
U Vruy
where
u(y) = \/u?, + 9ly) - oly,) (20)

Yo is the position of the last ''event'' (collision or emission), and Uy is the initial
velocity immediately after the last event (i. e., at the beginning of a new trajectory).
The tallied density at a data point y, for a total of N0 histories is then

n(y;) = —= Z 1 (21)
Van, ulyy)

k

where the sum over k may be greater than, equal to, or less than N0 because of col-
lisions and turning points in the potential field.

Current to collector. - The ratio of current density to the collector J to the
emitted current density J o for each iteration is computed from the relation




(22)

ZIOZ

@)

g
I
where N, is the number of test electrons reaching the collector.

Monoenergetic Emission

The solution for monoenergetic emission is exactly the same as for thermionic

emission with two exceptions. First, instead of choosing from an initial distribution of

velocities the initial conditions are, for every electron, u=1 and V =0, and second,
the density for N0 histories becomes (cf. eq. (14))

n(y-)=—1—z 1 (23)
' No - uk(yi)

COMPUTATIONAL METHODS

The original program was based on the assumption that Monte Carlo computations
would be limited to only a few collisions because of the requirement of reasonable com-
putor execution times. Hence, this program was optimized for L/x < 1. The results
proved this assumption overly pessimistic, but the program was not revised for the

present report.

Evaluation of Potential and Potential Minimum

After a curve fit of the density is obtained (subroutine CHEBY, appendix B), the

density distribution is given by a power series in y:

2
n(y) = a, + a7 + agy° + . . . +anyn

2y’ (24)

k
=0
where k is the degree of the fit.

10



The potential is obtained by substituting equation (24) in Poisson's equation (eq. (6))
and integrating n(y) term by term:

k a. .
o) =c +ey+Cy — 1 yi*2 (25)
G+ G+ 2)

But since
@(0) = 0
equation (25) can be written
k+2 ]
oly) = E ey’ (26)
=1
a SN
¢y =- j-2 i=2
iG-1
k+2 - (27)
¢y = @(1) - ¢
j=2 J

After the a. have been determined (subroutine CHEBY), the c; are computed in sub-
routine COEF(2).

Originally, equation (26) was employed (with k usually equal to 10) each time ¢(y)
was evaluated, but this proved too time consuming. For this reason it was decided to
tabulate ¢(y) at the beginning of each iteration and use the tabulated values whenever
possible. The interelectrode space was subdivided into 1024 regions, and the 1025 val-
ues of ¢(y) were tabulated in subroutine MINPHI. At the same time, ¢ was tested at
each evaluation for the minimum value. Hence, the location of the potential minimum
was ascertained within +1/2048 of the interelectrode separation. In addition, ¢ was
tabulated at data points y; Where the density was to be tallied. The results of tabu-
lating the potential was an eight-fold (and greater) decrease of execution time.

11



Choosing from the Distribution e * dx

It is pointed out in appendix A that choosing random values X; from the distribu-
tion whose p.d.f. is e X adx is equivalent to choosing random numbers Rk from the
uniform distribution (eq. (A7)) and using equation (A15):

X, = -In(R,) (28)

In the present problem, it is possible to identify the random variables u2 and V2,

with X, and ¢, with (1/ @)X (egs. (14) and (16), respectively). The random num-
bers R) are obtained from a pseudo-random-number generator of the congruence-
method type (ref. 5). This random generator is part of the computor library here at
Lewis Research Center.

Although the desired random variable can be obtained directly from equation (28),
it was decided to tabulate the Xk instead. A table (1025 entries) was constructed of
Xk (subroutine CUMVEL) at the beginning of the program. The table look-up is five
times as fast as employing equation (28) each time.

Location of Collision

If a distance to collision £, is given, the location of the collision Vo is obtained

yC
V2
L. = / 1/1 + 5 dy' (29)
1y
Vo ug + o(y") - oly,)

Two methods were used to minimize the number of times the integrand, and specifically
¢(y), need be evaluated. First, Simpson's rule was used in a search routine to allow
the use of the tabulated values of ¢(y) (see Evaluation of Potential and Potential Mini-
mum section, p.10), and then the step size (in the use of Simpson's rule) was made to
depend on the ratio Vz/ uZ,

The procedure employed for obtaining a reasonable step size can be best explained
by an example. Assume that Ye falls between any two points Yo and yg. Fora
straightforward application of Simpson's rule, three values are needed of the integrand
in equation (29) at three equidistant values of y: Yi» Vg, V3. Initially y; =y . The
¢(y) has already been tabulated at 1025 values of y given by

by solving

12




m
y —_ m=0,1, 2. . . 1024 30
m 1024 H b ( )

Consequently, Yo and V¢ will always be selected equal to tabulated values of Ym and
Hence, the first estimate of step size A in units of m is given by 0

A = |:r_n_f__;in£:| (31)
4

y .
Mg

where [ ] refers to the integral value. A second estimate of step size (obtained as a
result of trial and error computations) is given by

ar =24 M

where
M= [loglo(Vz/uz)]

Then, the step size is taken as the minimum of the two estimates.
If the value of A from equation (31) is zero (i.e., distance to collision is less than
four steps), then A is set equal to
m, - m
A= ':_f_o:|
2

If this should be zero, then the collision location Yo 1is arbitrarily set equal to Y.
f

CONVERGENCE AND STANDARD DEVIATION

It was observed, during tests of the program, that convergence (in the statistical
sense, p. 4) was obtained in the first few iterations. Since the succeeding iterations are
treated as independent trials, the problem arises in a production run of just how to
decide when convergence occurs. This was done in the following manner.

Each case (given anode potential) was run for a given number of iterations, for
example, 15. At the end of each iteration the sample means n(yi) and J/J o (see
eqs. (21) to (23)) were stored. Each of these stored values is analogous to an experi-

13



TABLE I. - EFFECT OF VARIOUS PARAMETERS ON STANDARD DEVIATION AND EXECUTION TIME

Ttem| Type of |Electrode | Dimension- | Current | Standard | Sample | Number of | Collisions | Execution
emission| spacing | less collec- | density |deviation, | size | iterations | (for one time,
to mean |tor potential,| ratio, oy iteration) min
free path (1) J/J0
ratio,
L/x
1 | Mono- 0.1 0.75 0. 961 0.001 5 000 10 483 2.42
2 ener- 2.0 . 972 . 0012 5 000 10 503 2.46
3 getic 2.0 . 971 .0019 2 000 5 213 .51
4 4.0 . 986 .0005 | 10 000 10 1079 5.28
5 .5 4.0 .918 . 0015 2 000 10 1 257 2.48
6 1.0 4.0 . 839 . 0015 1 000 10 1 483 2.09
7 | Thermi- 5.0 12.0 . 358 . 009 1 000 15 8 475 17.7
8 onic 5.0 32.0 .672 .003 1 000 18 16 367 37.65
9 1 10.2 . 942 .0016 1 000 10 147 1.49
10 1 10. 2 . 942 .0008 | 10 000 10 1198 14,18

mental data point. Carrying the analogy further, at the end of 15 runs (iterations) there
were sets of 15 data points for each of the sample means. If this were an experiment,
it would be expected that each set of 15 data points would have a certain amount of
'*gcatter' due to random error. In the present situation, however, the iterations before
convergence will produce data points with a nonrandom error. The problem then be-
comes one of simply eliminating the iterations that introduce a nonrandom error. This
was accomplished by obtaining the sample mean and standard deviation (see appendix A)
of each set of 15 data points. Then from each set only those points were retained that
were within three standard deviations of the sample mean. The final values of sample
means and standard deviation (given in table I) were obtained from the remaining data
points. In all cases, the number of iterations treated as independent trials was of the

order of ten.

RESULTS
Thermionic Emission

The effect of mean free path on the current-voltage characteristic is shown in fig-
ure 3. The solid line, L/x = 0, represents the collisionless solution of Langmuir
(ref. 3). The Monte Carlo calculations indicated along this curve were undertaken as a
check on the computer program. These particular results were obtained with 5000 his-
tories per iteration and ten iterations. The execution time for each point on the curve
varied between 2.5 and 4. 0 minutes.

14
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Figure 3. - Effect of mean free path on current-voltage characteristics for thermionic emission. Dimensionless
constant C =50,

The two solid data points on the curves for L/X =1 and 5 represent the conditions
where the slope of the potential is zero at the emitter. The O's on the curve L/x =1
indicate the results of an independent solution of Boltzmann's transport equation for this
problem (ref. 2).

The curve for L/X =5 was not extended to lower ¢(1) because of a loss in pre-
cision in the curve-fitting routine program (appendix B) used to fit the density distribu-
tion. A more flexible routine is being developed.

The effect of potential on the electron density distribution is shown in figure 4.
From the emitter out to about one mean free path, the density of the higher energy elec-
trons is less than that of the lower energy electrons as would be expected under condi-
tions of no collisions. The actual decrease in the magnitude of the density at the emitter
surface, however, indicates that in the higher potential case more of the backscattered
electrons are being turned about by the potential field before reaching the emitter. This
can be best understood by considering the effect of an accelerating potential field on the
cone of capture at the emitter for backward scattering (see fig. 5). This cone of capture
may be defined by a polar angle g*. It will suffice to consider a first collision whereby
the electron has initial energy of u2 + Vg and the collision occurs at x,. The magni-

o c
tude of the x-component of velocity after scatter becomes

u2 = [ug + ch) + ga(xc)] cosze (32)

15
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Figure 4. - Effect of anode potential on electron density distribution for therm-
lonic emission. Dimensionless constant C =50; electrode spacing to mean

free path ratio L/ =5,

If the electron is to reach the emitter against the monotonic potential field ¢(x) = 0,
then uz must satisfy the condition

2= olx,) (33)

When equation (33) is substituted into equation (32), 9* is defined by

(%)
0052 o* = ¢

2 2
ug + Vo + go(xc)

Emitter Collector
or
o~ _ ~ L cosze* = ————; p (34)

i 1+ __uo i VO
1
| o(x.)
| -

0 X

Equation (34) shows that an increase in poten-

Spatial coordinate, x 2
tial ga(xc) increases cos“9* and reduces 9*.

Figure 5. - Cone of capture at emitter.
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Figure 6. - Effect of mean free path on electron density distribution for thermionic emission. Dimensionless con-
constant C = 50; dimensionless collector potential (1) = 32,

Thus, the higher the potential field, the smaller is the cone of capture at the emitter.

This same phenomenon accounts for the crossover in the curves of figure 4 away
from the emitter. Since fewer of the backscattered electrons in the higher electric field
case reach the emitter, this implies that more are turned about by the field. The pres-
ence of turning points in the electron trajectories affects the charge density in two ways.
Since the u-component of velocity is zero at a turning point, the contribution to the
charge density there is exceptionally high; in addition, the path length of an electron in
the neighborhood of a turning point is much greater than the distance traveled normal to
an electrode surface, these electrons suffer more collisions, and, hence, contribute
more strongly to the charge density. This latter point is vividly illustrated by compar-
ing the typical number of collisions per iteration for the two cases of figure 4 (items 7
and 8, table I, p. 14). In the low potential case (¢(1) = 12) over 8000 collisions were
observed in one iteration, while for the high potential case (¢(1) = 32) over 16 000 col-
lisions were observed. The increase in number of collisions accounts for the crossover
in the two curves of figure 4 and the higher density for y > 0.2 in the case ¢(1) = 32,

The effect of mean free path on the density and potential distributions for constant
collector potential are shown in figures 6 and 7, respectively. As expected, the effect
of collisions is to increase the charge density and, therefore, decrease the potential in
the interelectrode space.
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Monoenergetic Emission

The corresponding diode characteristics
for monoenergetic emission are shown in fig-
ures 8 to 11. The author has, at present, no
hypothesis regarding the inflections observed
in the current-voltage characteristics (fig. 8)
for L/A=0.5 and 1.0. The points calculated
are reproducible, and each point, as plotted,
spans at least plus or minus two standard
deviations about the mean J/J o- The solid
lines represent independent solutions of the
Boltzmann equation for this problem in the
limit of one collision (ref. 14).

Another noteworthy feature of the mono-
energetic emission characteristics is the
buildup of charge density in the interelectrode

| region as the potential is decreased (fig. 9).

0 .2 4 .6 .8
Dimensionless spatial coordinate, y

Lo This increase in charge density is consider-
ably enhanced by the appearance of a potential

Figure 7. - Effect of mean free path on potential distribu- s s s s
tion for ther mionic emission. Dimensionless constant minimum (upper curve in fig. 9). The poten-

C=50.
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tial minimum causes more turning points to
occur in the trajectories of the scattered
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m—eQm—- .3} Monte Carlo
O==- .5

Analytic (ref. 14}
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Dimensionless collector potential, (1)

Figure 8, - Effect of mean free path on current-voltage characteristics for monoenergetic
emission. Dimensionless constant C =10,
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Figure 9. - Effect of anode potential on electron density distribution for electron
beam. Dimensionless constant C = 10/ym; electrode spacing to mean free path
ratio UN=0. 1
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Figure 10. - Effect of mean free path on electron density distribution for electron
beam, Dimensionless constant C = 10/ y7i; dimensionless collector potential
@il =4,
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electrons. Since the u-component of velocity
becomes zero at a turning point, the contribu-
tion to the charge density of electrons under-
going reflections in the potential field is ex-

ceptionally high.

Electrode spacing

to mean free
path ratio,

DY

DISCUSSION OF RESULTS

The agreement of the solution obtained by
the method proposed in this report and the in-
dependent results of Sockol (ref. 2 and fig. 3,
| | | | ] p. 15) and Goldstein and Goldstein (ref. 14 and

’ .ZDimension.l(:ss spatial'goordinate,'il L0 tig. 8) is very gratifying indeed. Most en-
Fig.ure 11. - Effect of mean free path on potential distribu- couraging, with regard to the extension of this
g)r: i%;‘r/n;:).noenergetic emission. Dimensionless constant  method to other problems, are the statistics
presented in table I (p. 14). These statistics
show that the execution times needed to obtain reasonable standard deviations o J need
not be excessive. In turn, they illustrate the effect of the consistent-field constraint
(Poisson's equation) on the number of histories needed for good statistics (tens and hun-
dreds of thousands of histories are generally required in other problems where this con-
straint is absent). It must be emphasized that the execution times illustrated in table I
are not the minimum attainable, since no attempt has yet been made to incorporate any
of the variance-reducing techniques discussed in the literature (ref. 15).

The execution times in the problems treated herein could most directly be de-
creased by a more extensive use of tabulated values (eliminating the Gaussian quadra-
tures - hence, obviating completely the need to evaluate ¢(y) during an iteration) and
by optimizing the number of tabulations needed (one may not need 1025 tabular values).
In addition, for larger values of L/, it would be more appropriate to step along each
trajectory from the emitter instead of first ascertaining if a collision has occurred in
the interelectrode space as is done in the present case.

Dimensionless potential distribution, oly)

CONCLUDING REMARKS

A general method for the calculation of transport properties in a low-density ionized
gas has been presented. This method has been applied to two cases of electron trans-
port in a perfect Lorentzian gas. Excellent agreement has been demonstrated by two

other independent investigations.
Although the particular applications of the method presented herein employ a hard-
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sphere collision model, the great advantage in the Monte Carlo method lies in its in-
herent ability to provide similar solutions for any given collision model, theoretical or
experimental. This includes inelastic, charge exchange, and ionizing collisions. This
method is limited, however, to those cases where avalanche ionization does not occur;
even in this latter case, however, the Monte Carlo method should be capable of provid-
ing the source intensities for the collision term in the Boltzmann equation for arbitrary
cross sections, and, therefore, allow a numerical solution of the same.

This method should also be of value in the solution of plasma sheath problems,
which are, in reality, just generalizations of the diode problem with different boundary
conditions at the emitter and/or collector.

Lewis Research Center,

National Aeronautics and Space Administration,
Cleveland, Ohio, May 14, 1965.
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APPENDIX A

RANDOM VARIABLES

In this section there is interest only in continuous probabilities for which there
exists a continuous function f(x), called the probability distribution function (hereinafter
p.d.f.), such that

P[asXsb]:fbf(x)dx

a
P[-0 < X < ] = f+°° f(x)dx = 1 (A1)
where
f(x) =0 —o <X <

To speak of a '"random variable!" X (instead of x) is really to define a mathe~
matical point of view. This unambiguous point of view maintains no interest in the exact
value of X but instead is only interested in inquiring about the probability of finding X
in a certain region (of x-space).

For example, the case is considered where the probability density function is the
nondimensionalized Maxwellian distribution of the x-component of flux (eq. (11) inte-

grated over V):

—uz
f(u)du = 2ue du u=0
(A2)
=0 u<o

In the present analysis, the concern is not for a knowledge of a particular value of u,
but rather to determine just what the probability is that a random variable U lies in the

range u, u-+ Au.
In the study of a random variable X the function FX(x) is of great importance:

Fy(x) = P[X = x] = f * Hx")ax' (A3)

-0
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This FX(x), or simply F(x), is called the cumulative distribution function (hereinafter
c.d.f.) of the random variable X. This function shall be used subsequently.

A concept basic to the discussion of random variables is the expectation value E[ ]
of a function of a random variable g(X):

+00
E[g(X)] = /: ~ e(0fxdx (A%)

In particular, the expectation of a random variable itself

E[X] = T () dx (A5)

-00

is the familiar mean or average value of X, - < X < «, Of interest in the text is the
expectation of the function 1/U of the random variable U distributed as f(u) (eq. (A2)).

+0 2
E[lJ = f 1 2ue™ du
U (o} u

oo 2
=2 f e du
o

hence,

EH = Vr (A6)

Choosing from a Distribution

It is first necessary to define what is meant by choosing a sequence of random num-
bers X, from a distribution f(x) (or equivalently, choosing X, distributed as i(x)).
It is assumed, for the sake of illustration, that the p.d.f. f(xX) is nonzero only in the
interval 0 =x =< 1. This interval is then subdivided into 10 equal subintervals. Then,
if the sequence of N random numbers Xk is distributed as £(x), a plot of Ni/ N
against the midpoint of the ith interval (where Ny is the number of X, 's in the ith
interval) should approximate f(x). Of course, the larger the number N, and/or the

smaller the subdivision used, the better will be the approximation.
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How is a sequence of random numbers, say U, distributed as f(u) (eq. (A2)),
chosen on a digital computer? In practice, this sequence is not obtained; instead, a
sequence of random (pseudo-random) numbers R, is obtained, distributed as the uni-

form distribution

p(r) =0 r<o
=1 0=r=1 (A7)
=0 r>1

Hence the immediate problem then becomes, given a sequence of random numbers Rk
distributed as p(r) (eq. (A7)), how to obtain, even indirectly, a sequence of random

numbers U distributed as f(u) (eq. (A2)).
Consider two random variables X and Y related by the monotonic increasing

function
Y = (X) (A8)

where X has a known p.d.f. f(x). Then if X and y are corresponding values related
by equation (A8),

P[Y <y]=P[X <x] (A9)
and
PIY <y]= Gy = [ glyay
(A10)
X
P[X < x] = Fglx) = f f(x")dx"
or
y X
S etvnay = [ txax (A11)

The inverse problem can now be considered. If g(y) and f(x) are given, the func-
tional relationship between y and x (eq. (A8)), such that equation (A9) is still valid,

24




must be determined. This relation can be easily obtained providing both integrals of
equation (A11) can be solved in closed form. For example, if the p.d.f.'s p(r) (eq. (AT))
and f(u) (eq. (A2)) are employed,

R U
f p(r)dr = f f(u)du (A12)
(8] (o]
R U2
f ldr = f 2ue du (A13)
(¢] 0O
-u2
R=-e +1 (A14)
or
U2= -In(1 - R)

but since R is a random number between 0 and 1, 1 - R is also a random number
between 0 and 1; hence,

v2= R (A15)

is the required functional relationship between U and R. Therefore, only a sequence
of random numbers R, from the uniform distribution p(r) (eq. (AT)) need be obtained,
and then equation (A15) can be used to obtain a sequence of random numbers Uk dis-
tributed as f(u) (eq. (A2)).

Generalizing the previous procedure to obtain a sequence of random numbers Xk
distributed as f(x), and given a sequence of random numbers Ry from the uniform dis-
tribution (eq. (A7)), it is only necessary to solve the equation

Ry = F(X}) (A16)

where F(x) is the c.d.f. (eq. (A3)) of X.

This method becomes unwieldy, however, whenever F(X) cannot be expressed in
closed form as in the preceding example. There do exist techniques for choosing from
distributions in this case (e.g., the rejection method, ref. 14), but they need not be dis-
cussed here.

Another important aspect of random sampling from a given distribution is the result
of summing the random numbers, or a function of the random numbers, obtained. For
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instance, if a sequence of random numbers X, is chosen and distributed as f(x), there

is obtained upon summing

1 N +00
lim—z X, = E[X] = f xf(x) dx
N Lo
N—>°° k=1
This is readily extended to
1 2l +eo
lim ~ =
lm & > 8050 =g = [ et
~0 k=1

For a particular case of interest in the text

-
e

(A17)

(A18)

(A19)

from equation (A6), where U is distributed as f(u) (eq. (A2)). A sample mean is de-

fined as
- 1 N o(X.)
g = —
N Z=: k
for finite N,

Standard Deviation

(A20)

If the random variable X is distributed as f(x) and g(x) is an integrable function

of x, then

Ble]= [ eWitoax

Elg2] = f g(x) 2(x)dx
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and the standard deviation of g(x) is defined as

2=ule-we? = [ (e - Bx))*9ax = Blg?] - Ble]? (a21)

It is noted that this definition of G_ is based on a knowledge of the p.d.f. of X, It can
be shown that an unbiased estimate of 0_ can be obtained (ref. 10, p. 370, exer-
cise 4. 6) from a random sequence {g(Xk)} by the formula

N

o = N—l—lka [exi) - €] (a22)

Equation (A22) represents the computation performed in the text to obtain Oy (see
table I, p. 14).

Central Limit Theorem
This theorem (ref. 4, p. 362) is central to all Monte Carlo problems. It is based
on the fact that regardless of the distribution of X, the sample means g (eq. (A20)) are

distributed approximately as a normal distribution.
The central limit theorem can then be stated as

ao Bo B 2
lim PEE(g)+—g<EN<E(g)+;€|=_1_/ e t/2 4 (A23)
o

Newoo Y~ NJ Ver

For @ =-1 and B =1, this theorem shows that the probability of the sample mean
lying within .J:crg / I/I—\I— of the true value is approximately 0. 95,
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APPENDIX B

COMPUTER PROGRAMS
by Harold E. Renkel
Curve Fitting Program

Subroutine CHEBY listing is a program for determining a finite approximation
fN(x) in the least squares sense to data y o obtained at the arguments x o where

N
i@ = Y ayx" (B1)
k=0

In the present problem the advantage is being able to choose the arguments before taking
the data. This permits the application of Chebyshev polynomials as described by
Lanczos (ref. 16). This method is both very powerful and very efficient. The coef-
ficients a in equation (B1) are obtained without the need of inverting a matrix as is
usual in the ordinary method of least squares curve fitting.

The arguments X, are found from

X, = [cos 0g+ 1] (B2)

o

N

where
0q= oT/N

Then an expansion for fN(x) in terms of the shifted Chebyshev polynomial (ref. 16)
Tk(x) is obtained:

N
1
(%) = 5 b, + Z Ty T} (%) (B3)
k=1
The coefficients bk are obtained from
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N-1

oy = % Yot ) YaTilxe) + % YNT(EN) (B4)
o=1
where
Tk(xa) = cos(kg o) = €OS <k %) (B5)

and y, are the data obtained at x,.
Each Chebyshev polynomial, however, can be expressed as a power series in x
with integral coefficients:

N .
Ty (%) = Z cijJ (B6)
j=0

where the ij can be obtained from the following recursion relations:
T, 1(x) =2(2x - )T, (x) - T (x)1
k+1VY T k k-1

T (%) = 1 L (B7)

Ty(x) = -1+ 2x

Substituting equation (B6) into equation (B3) yields the coefficients ay (eq. (B1)):

N
1
By = .C e + Z biCyy (B8)
=1

In addition, subroutine CHEBY makes use of the symmetry of the trigonometric func-
tions (eq. (B5)) as discussed in reference 17 to reduce the number of multiplications
needed.

Gaussian Quadrature

The use of Monte Carlo techniques and variables based on random numbers for
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numerically solving problems often demands that a large sampling of data be analyzed to
obtain the necessary accuracy of the solution. Such large samplings may require many
minutes and even hours of computing time if time saving methods are not employed.
Subroutine QUAD is a Fortran IV program that numerically integrates a function £(x)
over the range x; to x,. It is based on the method of Gaussian quadrature (ref. 18)
which states that

XO n
/ f(x)dx = Z ij(aj) +E,
X

i j=1

where the H.'s are a sequence of weight coefficients and the a.'s are the associated
abscissas that have been determined as the roots of certain orthogonal polynomials. The
well-known error term E  based on the 2nth derivative of f(x) is not considered to
be of such magnitude as to affect present calculations and therefore has been omitted
from subroutine QUAD. In comparison to other more popular methods of numerical
integration such as the trapezoidal formula and Simpson's rule, which require that the
integrand be evaluated at many points over the range of integration [xi,xo], Gaussian
quadrature will produce the same accuracy with comparatively fewer evaluations of the
integrand, which results in a considerable savings of computing time especially if the
integrand f(x) contains trigonometric functions, logarithms, or square roots.

The subroutine in present form includes the weight coefficients and abscissas for
n =3 through 16. To apply subroutine QUAD, the function f(x) to be integrated, the
upper and lower limits of the integral X; and X, and n the number of points of evalu-
ation must all be specified. The program converts the abscissas from the range [-1,1]
to the range [x;,x ] by the algorithm

a)—X1+ —xi)(aj+1)

evaluates the integrand f(x) and X5 and calculates the sum of the products I—Hf(a ).
The final sum is then multiplied by the correction factor é (x - X. ) to compensate for

the change in the range of the variable of integration.

When analyzing a function to be integrated by this method one must be careful to
note any discontinuities in the range of integration [Xi’xo]' If any should exist, then it
becomes necessary to divide the region of integration into smaller intervals, choosing
the new limits of integration so that comparatively small regions are established in the
neighborhood of the discontinuity. This causes the integrand to be evaluated more often
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in the neighborhood and results in a more accurate solution. The total integral for the
interval [x;,x ] is the usual sum of the integrals of each of the subdivisions.
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APPENDIX C

FLOW CHARTS AND PROGRAM LISTINGS

The symbols used in the flow charts (figs. 12 to 16) are as follows:
DELX size of subdivisions

EN number of subdivisions

FPATH distance to collision

IC location number corresponding to XC

IFF location number of bound to region containing XC
IMIN location number corresponding to XMIN

10 location number corresponding to XO

ITP location number corresponding to XTP

K number of iterations

N number of histories per iteration

PHIMIN magnitude of potential minimum

S path length along trajectory from XO to XTP or XC
TPHIX(I) tabulated values of ¢(y)

UsQ u2

USQO ug

vsSQ v2

XC location of collision

XMIN location of potential minimum

X0 location of scatter

XTP location of turning point
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Figure 12, ~ System and MAIN program flow chart.
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Figure 13. - Subroutine ITER flow chart.
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Figure 1. - Subrout‘\ne ESCAT flow chart.
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F = FPATH

1) = 10
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Figure 15. - Subroutine XIC flow chart.
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XTP = DELX*
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Figure 16. - Subroutine XITP flow chart.

A listing of the FORTRAN IV programs used to calculate the transport properties

in a low ionized gas follows.
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$IBFTC MAIN DEBUG«DECK

[aNesNaNaNaNaNe!

c

COMMON/BITER/NO,KI
COMMON/BSTOSS/WSQy VSQs COSN, ALPHA
COMMON/BPHI/NPHI APHI(20) 4NDPHI,ADPHI(20) 4NDEN
COMMON/BMAIN/ CONST,VOLT(20),CURRNT(20)
COMMON/BMIN/ XMEN, PHIMIN, IMIN, TPHID(33), TPHIX{1026) ,AyByC,DELX,EN
COMMON/BCHEB/NLsX{21),¥121),COEFS(21),ERROR
COMMON/BCHEBZ2/N2
COMMON/BVEL/VEL{1024)
DIMENSION DATE(2)
COMMON KNTRyN{20)

NO = NUMBER OF TRIALS PER ITERATION

N1l = NUMBER OF POINTS WHERE DENSITY IS SAMPLED

KI = NUMHBER OF ITERATIONS

ALPHA = RATIO OF MFP TO ELECTRODE SPACING

CONST = CONSTANT PRECEEDING DENSITY IN POISSONS EQUATION

READ IN INITIAL DATA

READ(S541) NOJNLyN2,KIoALPHA,CONST
1 FORMAT(415,2E10.0)

CALL COEF(1)

READ(5,4) DATE
4 FORMAT(2A6)

INETIALILE PROGRAM
CALL SAND(RQ)
CALL CHEBY(L)
CALL COEF(2)
DEBUG (COEFS{I),I=1,11)
DEBUGLAPHI(I)sE=1,413)
CALL CUMVEL

COMPUTE COLLECTOR VOLTAGE AND CURRENT FOR EACH VALUE OF APHI(2)
5 READ(5,42) VOLTE20),ALPHA

2 FORMAT(2ES.1)

3 CALL TIMELUITD)

COMPUTE MEANS AND PRINT /4 PUNCH OUT RESULTS
WRITE(6,4100) VOLT(20),CONSTyALPHA,NO)KI,NL,N2

100 FORMAT({1lH1, 39H ANCDE POTENTIAL IS 1F6.2/

1Xy 39HCONSTANT IN POISSONS EQUATION, C =,F6.2/
1X,39HDIMENSIONLESS MEAN FREE PATH ALPHA=,1PE10.1/
1Xy 39HTRIALS PER ITERATION, NO =,1I5 /
1X,39HNUMBER GF ITERATIONS KI =, 12 /
1X, 39HNUMBERS OF SAMPLE POINTS, N1l =,12 /
1X, 39HNO. OF TERMS IN DENSITY FIT N2 =,12 )
CALL ITER
CALL DISLRM
CALL DISCR2(CURRNT,CM,CSTD)
CALL CHEBY(2)
CALL COEF(2)
CALL COEF(3)
CALL TIMEL(T2)
TIME=(T2-T1)/3600.
WRITE(6,203) KNTR

b ot ot

203 FORMAT(1HO,28HTOTAL NUMBER OF COLLISIONS =,i5/

11HO,36HNUMBER OF ENTRIES AT EACH DATA POINT )
WRITE(6+204) (N(I),Ix=1l4N1)

204 FORMAT(1H ,11110)

WRITEL6+4200) VOLT{(20),APHI{2),CMsCSTDyXMIN,PHIMIN, TIME

200 FORMAT{1HO, 17THANODE POTENTIAL =,F15.646X,28HPOTENTIAL SLOPE AT EM]

1TTER =,F1l0.,4/1H ,15HANODE CURRENT =4F1l5.696Xy9HSTD.DEVe= 4F15.6/
L1HO ¢ 6HXMIN =4F1l5.646X¢8HPHIMIN =4F15.6/1H0,6HTIME =,F6.3,
18H MINUTES )

ELMFP=1./ALPHA
WRITE(64202) DATE,CONST,ELMFP,VOLT(20)4CMyCSTD,APHI(2)+NO,KI

202 FORMAT{(1HS$,2A61FTe09F6u29FFe39FFe49FLl0.5,FB.2,3174141

PLOT DENSITY AND POTENTIAL DISTRIBUTION

CALL PLOT
G T0 5
SToP

END

[l N R N

o—v—t-o—o—-.—u—:-—.—-s—.—n—-—r—t—r-o—'-ﬂv—v—-.—r-n—r—.—»-v-v—o—r—v—u—r—.—.—-—v—w—v—o—n—t-r-r-—n—-r--v-'—'-r-v—p—v-r-n—r-v-r-v-

00031
00040
00050
00060
00070

075
00080
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00085

095

110
115
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00194
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$IBFTC ITER DEBUG#DECK

C

SUBROUTINE ITER

C MONTE CARLO CALCULATION OF DENSITY AND ITERATION ON POTENTIAL -
DISTRIBUTION

C
[+

c

10

COMMON/BMAINS CONST,VOLT(20),CURRNT(20)
COMMON/BITER/NO,KI
COMMON/BNXF/X09 XFy XCo XTPyFPATH, Sy, NQUAD oK, 11
COMMON/BPHI/NPHI,APHI(20) NDPHI,ADPHI(20) ,NDDPHI
COMMON/BCHEB/NLoX{21)4+¥(21),COEFS(21),ERROR
COMMON/BMIN/ XMEN, PHIMIN, IMIN, TPHID(33),TPHIX{1026),A,8,C,DELX,EN
COMMON/BNIF/10,IC, ITP,PHIO,USQO
COMMON/BSTOSS/WSQsVSQe COSNy ALPHA

COMMON/BVEL/ VEL(1024)

COMMON/BTALLY/ ICM1,DEN(20,20)

COMMON KNTR,N({11)}

DATA SQRTPI/1.77245385/

INTEGER A

EQUIVALENCE{A,KNTR2}

DO 35 K=1,.KI

CALL TIMEL(TL)

NTHRU = O,
DO 10 I=1,N1
N{I}=0

DEN(1,K)= 0.

C DETERMINATION OF LOCATION AND MAGNITUDE OF POTENTIAL MINIMUM

[«

20

25

32
33

34

CALL MINPHI
DEBUG(TPHID{I}sI=1411)
KNTR=0

KNTR2=0

DO 33 11=1,N0O

CALL RAND(R)

J = IFIX{1024.%R) +1
UsSQ = VEL(J)

CALL RAND(R)

J = IFIX{1024.%R) #+1
VSQ = VEL(J)

CALL RAND(R)

4 = IFIX{1024.%R) +1

FPATH = ALPHA&VEL(J)
X0=0.

ICM1=0

CALL FSCAT

IF(ICM1.EQ.NL) GO TO 32
IF(ICM1.EQ.0) GO TO 33
CALL STOSS
IF{COSN.LT.0.) GO TO 25
CALL FSCAT

GG TO 20

CALL BSCAT

GC TO 20

NTHRU = NTHRU+1
CONTINUE

DO 34 I=1.N1

DEN{IoK) = DEN(I,K)/(FLOAT(NO)=*SQRTPI)
Y(I)= DENUI,K)
DEBUGIY(I)yI=14N1)

C CURVE FIT OF DENSITY AND COMPUTATION OF PHI(X) AND DPHI(X)

C

35

CALL CHEBY(2)

CALL COEF(2)
VOLT(K)=TPHID(N1)
CURRNT(K) = FLOAT{(NTHRU}/FLOAT(NO)
DEBUGIN(I)},I=1411)

DEBUG KNTR

DEBUG VOLT(K)y, CURRNT{K)
CALL TIMEL(T2)
TIME=({T2-T1)/3600.

DEBUG TIME

CONTINUE

RETURN

END

NNNRNNMNNNNNNNNNNNNDNNNNNNON

NAONNNNONNNNNNNNONNNNNONNNNNNNRNNONNNNNNNRODNNRNNNNNNNNNNNNNNNONN

NN

00741
00750
00755
00756
00757
00758
00760
00770
00780
00790
00800
00810
00815
00820
00825
00830
00834
00835

0836

0837
00840

00850
00860
00865
00870
00875
00876
00880
00882
00885

0886
00900
00910
00920
00925
00930
00940
00945
00950
00960
00965
00980
00990
01000
01010
01020
01030
01040
01050
01070
01080
01100
0ol1110
01120
01130
01140
01150
01152
01154
01155
01160
01175
01176
01180
01190
01192
01192
01194

01195
01200
01210
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$IBFTC FSCAT

40

10

DECK
SUBROUTINE F5CAT

COMMON/BMIN/XMENs PHIMIN, IMIN, TPHID(33),TPHIX(1026),A,B,C,DELX,EN

COMMON/BNXF/X0g XF9XCy XTP3FPATHs Sy NQUAD 4K, II
COMMON/BSTOSS/8SQ ¥SQyCOSN,ALPHA
COMMON/BNIF/10,IC,ITP,PHIO,USQO
I0=EN®X0+1.5

PHIQ=TPHIX( 10}

USQ0=USQ-PHIO

IF({X0.6E.XMIN) GO TO 6

IF{USQO.GT.-PHEMIN) GO TO 4

CALL XITp

IF(10.EQ.1TP) GO TO 10

XF=XTP

CALL QUADGM

DIF (KeEQel AND.IILLE.S) DEBUG XTP,S
IF(FPATH.GE. 2.#S) GO TO 3

IF(FPATH.GE.S) GO TO 2
CALL XIC

DIF (KcEQ.chND.IIbLEQS)
CALL TALLYL

X0=XC

RETURN

XL=XTP

CALL TALLY1
FPATH=2.#S-FPATH

60 T0 1

Coll TALLY2

FPATH = FPATH-2.#S
IF(X0.EQs0.) RETURN
XF=0.

NQUAD=5

CALL QUAD

DIF (K.EQ.1.AND.II.LE.S5) DEBUG FPATH,S
IF(FPATH.LT.S8) GO T0 1

XC=XF

CALL TALLY1

RETURN
SMAXSQ=(1.+V5Q/USQ)*(1.—X0)»=2
IF{FPATH*FPATH.GE.SMAXSQ) GO TO 5
NQUAD=3

IF{X0.LT,..2)NQWAD=5
IFIX0ulTee2.AND.USQ.LT2.01) NQUAD =9
XF=1.

CALL QUAD

DIF(KLEQ.1.AND.I1.LE.S) DEBUG NQUAD,S
IF{FPATH.GE.S5) GO TO 5

CALL XIC

DIF (KeEQeleANDLIILLE.S) DEBUG S4XC
CALL TALLY1

X0=XC

RETURN

XC=1.

CALL TALLYL

RETURN

END

DEBUG XxC

us»UJu\»uawu»u:uL»u»u\»uaut»u:w\uuaw\»qu\»uaw\»uawx»uaw\nuow\»u:uk»u>w\nu:u\»uaw\»uawxuuau

01230

1240
01250
01260
01270

1270
01275
01276
01280
01290
01300

1305
01310
01340
01352
01360
01370
01380
01392
01400
01405
01410
01420
01430

1460

1470
01510

1514
01515
01520
01525
01540
01552

1560
01570
01580
01590
01600
01603
01610
01620
01630
01640
01650
01652
01660

1675
01682
01690
01695
01700
01710
01720
01730
01740



$IBFTC 8SCAT DECK

10

SUBROUTINE BSCAT

COMMON/BMIN/XMINy PHIMIN, IMIN, TPHID(33)  TPHIX{1026) yA4BsCDELX+EN

COMMON/BNIF/1041C,1TP,PHIO,USQO

COMMON/BNXF/XOgXF ¢ XCo XTPyFPATH 4S9 NQUAD

COMMON/BSTOSS/USQ,VSQsCOSN,y ALPHA
10=EN#XO+1.5

PHIO=TPHIX(10)

UsSQO=USQ-PHIO

IE(XOLLT.XMIN}GO TO 4
IF(USQO.GT.~PHIMIN) GO TO 4

CALL XITP

IF{I0.EQ.ITP} GO TO 10

XF=XTP

CALL QUADGM

DIF (K.EQel.AND.IT.LE.5) DEBUG XTP,S
IF(FPATH.GE- 2.%S) GO TO 3
IF{FPATH.GE.S) GO TO 2

CALL XIC

DIF (K.EQal.AND.II.LE.5) DEBUG XC
CALL TALLYL

X0=XC

RETURN

XC=XTP

CALL TALLYL

FPATH=2.#S-FPATH

GO TO 1

CALL TALLYZ

FRATH = FPATH-2.%S
SMAXSQ=(1.+VSQAUSQ)I#(1.—XD)an2
IF(FPATHAFPATH.GE.5MAXSQ) GO TO 6
XFf=xle

NQUAD=5

CALL QUAD

DIF (K EQe.1.AND.ITI.LE.S5) DEBUG FPATH,S

TIE(FPATHLLT.S) GO 7O 1
XC=1

CALL TALLYL

RETURN

NQUAD=5

IF(USQ.LT..01) NQUAD=9
XF=0.

CALL QUAD
IF{FPATH.GE.S) GO TO 5
CALL XIC

DIF (K.EQel.AND.II.LE.5} DEBUG S, XC
CALL TaALLYl

X0=xC

RETURN

XC=0.

CALL TALLYL

RETURN

END

$IBFTC STOSS DECK

C
C COMPUTATION OF COLLISION PARAMETERS

[+

SUBROUTINE STOSS

COMMON/BSTOSS/WSQy VSQyCOSN,ALPHA

COMMON/ BNXF/ X0 9. XFo XCo XTPy FPATH» Sy NQUAD

COMMON/BVEL/VEE(1024)
COMMON/BNIF/404IC ITP,PHIO, USQO

eKell

FOR ELECTRON-NEUTRAL

sKo Il

SCATTERING

COMMON/BMIN/ XMENy PHIMIN, IMIN, TPHID{33),TPHIX(1026),A,B,C+sDELX,EN

W5Q=USQO+VSQ+TPHIX{ IC)
CALL RAND(R)
COSN=1.-2.4R
USQ=NSQ=COSN#COSN
VSQ=W5Q0-U5Q

CALL RAND(R)
J=IFIX{1024.#R¥F+1
FRATHEALPHA®VELI(J)

DIF (KeEQul.AND.IT.LE.S5) DEBUG USQsVSQeCOSNsFPATH

RETURN
END

01760
01770
01775
01780
01790
1800
01805
01806
01810
01820
01830
1835
1840
4 0186
01872
01880
01890
01900
01912
01920
1925
01930
01940
019850
1980
1990
02030
02050
02060
02065
2066
02068
02070
02082
02090
2100
02110
02120
02130
02140
02150
02160
02170
2180
02192
02200
02205
02210
02220
02230
2320
2330

PLEILPPDLPDPPLPPPLPDPPPDLPPPDPPDPIPEPILPLPPIPD PP rr

02270
02274
02275
02276
02280
02290
02295

2294
02296
02300
02310
02320
02330
02340
02350
02360
02365
02372
02380
02390

[LRCURGRURURV RURLRURURU R RURDRU R RO RERE BT ]
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$IBFTC TALLYL DECK 6 02401
SUBROUTINE TALEkY] 6 02410
COMMON/BSTOSS/UWSQ,YSQ,COSN,ALPHA 6 02420
COMMON/BNXF/XOs XFo XCy XTPoFPATH, Sy NQUAD +K,1I 6 02430
COMMON/BCHEB/NLEy X(21),Y(21),COEFS{21),ERROR 6 02440
COMMON/BTALLY/ 1CM1,DEN(20,20) 6 02450
COMMON/BMIN/ XMEN, PHIMIN, IMIN, TPHIDL33), TPHIX{1026) yA+B,CsDELX,EN 6 02460
COMMON/BNIF/10,I1C,£TP,RPHIO,NUSQO 6 02465
COMMON KNTR,N{11) & 02470
IF{X0.GT.XC) GB 1O 7 6 02480
I = ICM1 6 02490
Go TO 10 6 02500

1 DEN(I+K) = DENGI,K) + 1./SQRT(TEST) 6 02510
DIF [(KeEQ.l.AND.II.LE.5) DEBUG DEN(1,K) 6 02512
NLT)I=N(I)+1 6 02515

10 I = I#1 6 02520
TEST=USQO+TPHIBL( ) 6 02525
IF(TEST.LE.O0.) GO TO 3 6 02526
IF(X{1).EQ.XC} GO 10 2 6 02530
IFIX{I).LTXC) GO TO 1 6 02535

GO 70 3 6 02536

2 DEN{IsK)} = DEN{1,KJ} + 1./SQRTITEST) 6 02540
N{T)=N(I)+1 6 02545
DIF (KeEQelsAND.II.LE.5) DEBUG DEN(I,K) 6 02552
ICM1=1 6 02560
RETURN 6 02570

T 1 = ICM1+1 6 02580
G0 TO 11 6 02585

4 DEN(I,K) = DENCI,K)} + 1./SQRT(TEST) 6 02590
N{I}=N{I)+] &6 02595
DIF (K.EQel.ANR.II.LE.5) DEBUG DEN{I,K) 6 02602

1L 1 =4d-1 6 02610
TEST=USQO+TPHIBLI) 6 02615
IF({TEST.LE.O.) GO TO 6 6 02616
IF(X{I).EQ.XC} GO TO 5 6 02620
IF(X{(1).GT.XC) GO TO 4 6 02625

GO TO 6 6 02626

5 DEN(IyK) = DENGI4K) + 1./SQRT(TEST) 6 02630
N{T)=N({E)+1 6 02635
DIF (KeEQol.AND.I1.LELS5) DEBUG DEN(I4+K) 6 02642
ICM1=1-1 6 02650
RETURN 6 02660

3 ICMl=I-1 6 02670
RETURN 6 02680

6 ICMl=1{ 6 02690
RETURN 6 02700
END 6 02710

$IBFTC TALLYZ2 DECK 7 02721
SUBROUTINE TALEY2 T 02730
COMMON/BTALLY/ ICM1,DEN(20,20) 7 02740
COMMON/BSTOSS/WSQ,yVSQyCOSNyALPHA T 02750
COMMON/BNXF/ X0 ¢ XF o XCy XTP FPATHs SyNQUAD 4Ky Il 7 02760
COMMON/BCHEB/NLyX(21),Y(21),COEFS{21),ERROR 7 02770
COMMON/BMIN/ XMEN, PHIMIN, IMIN, TPHID(33), TPHIX(1026) yA4B,CoDELX,EN 7 02780
COMMON/BNIF/ 104 1C, ITP,PHIO,USQO 7 02785
COMMON KNTRsN{11) T 02786
IF(X0.GT.XTP) GO TO 2 7 02800
I=ICM1 7 02810
GO 10 3 7 02815

1 DEN(I,K)=DEN(I4K)+2./SQRT(TEST) T 02820
N{I)=N(I)+1 7 02825
DiF (KeEQelsAND.I1.LE.S5) DEBUG DEN{I,K) T 02832

3 I=]+l 7 02840
TEST=USQO+TPHID(I) 7 02845
IF(TEST.6Te04ANDX{I)uLTXTP ) GO TO 1 7 02850
RETURN 7 02860

2 I=ICMl+] 7 02870
G0 TO 4 7 02875

5 DEN{I¢K)=DEN{IsK}+2./SQRT(TEST) 7 02880
NEI)=N{I)+1 7 02885

4 I=I-1 7 02890
TEST=USQD+TPHIB(I) 7 02900
IF{TESTeGTe0eoANDX{I)4GToXTP ) GO TO 5 7 02910
DIF (KeEQel.AND.I1.LE.5) DEBUG DEN(I,K) 7 02912
RETURN 7 02920
END 7 02930
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$IBFTC DISCRM DECK

100

13

15

120

SUBROUTINE DISERM

REAL MEAN1l, MEANZ2

COMMON/BITERINO K

COMMON/BTALLY/ ICM1,0EN(20,20)
COMMON/BCHEB/NLE,X(21)»Y(21),COEFS{21),ERROR
WRITEL6,100)

FORMAT(1HL, 47TH MEAN DENSITIES BEFORE AND AFTER DISCRIMINATION /1H

1Ky 58H X0 MEAN 1 STD.DEV.1 L MEAN 2
FKR = l./FLOATEK)

DO 9 1=1,N1

SUM1 = 0.

SUM2 = 0.

00 13 J=1,K

SUML = SUM1 # DBEN(I,J}

SUM2 = SUM2 + DEN(I,J)#DEN{I,J)

MEANL1 =SUM1l»* FKR

STD1=SQRT({SUM2#FKR — MEAN1#MEANL)/FLOAT{K-1})
SUM1=0

SuUM2=0

L=0

DO 15 J=1,K

Q= DEN(I,J)-MEAN1

IF(ABS({Q).GT.3.#STD1) GO TO 15

S5UM1 = SUM1 + DEN(I,J)

SUM2 = SUM2 # DEN(I,J)#DEN(I,J)

L=L+]

CONTINUE

FLR =1./FLOAT(L)

MEAN2 = SUM1#FLR

STD2=SGRT({ (SUM2#FLR — MEAN2#MEAN2)/FLOAT(L-1))
WRITEL6+120)1,%X (I),MEANLySTD1,L,MEAN2,STD2
FORMAT(1H ,1Xy3251Xy 3F1l0.691Xy1241%X,2F10.61}
Y{ 1)=MEAN2

CONTINUE

RETURN

ENOD

$IBFTC DISCR2 DECK

13

15

SUBROUTINE DISCR2 (A,AMEAN,ADEV)
COMMON/BITER/NG, K

DIMENSION A(20k

REAL MEAN1l, MEAN2

FKR = l./FLOATEK)

SuMl = 0.

SUM2 = Q.

00 13 J=1,K

SUML = SUML + AL(JS)

SUM2 = SUM2 + AlJ) =ALJ)

MEAN1 =SUMl=* FKR

STDL = SQRT{{SUM2#FKR ~ MEANL#MEANL)/FLOAT(K-1) )}
SUM1=0

SUM2=0

L=0

DB 15 J=1,K

X=A(J)-MEANL
1F(ABS(X).GT«3.¢STD1l} GO TO 15
SUML=SUM1+A(J)

SUM2 = SUM2 + A(J) =A(J)

L=i+l

CONTINUE

FLR =1./FLOAT(L)

MEAN2 = SUML#FRR

STD2 = SQRT((SWUM2#FLR - MEANZ2#MEAN2)/FLOAT(L-1))
AMEAN=MEAN2

ADEV=STD2

RETURN

END

STD.DEV.2 /)

8029051
8029060
8029070
8 29080
8029090
8029100
8029110
8029120
8029130
8029140
8029150
8029160
8029170
8029180
8029190
8029200
8029210
8 29220
8029230
8029240
8029250
8029260
8029270
8 29280
8029290
8029300
8029310
8029320
8029330
8029340
8 29350
8029360
8029370
8029380
8029390
8029400
8029410

9029421
9029430
9029440
9029450
9029460
9029470
9029480
9029490
9029510
9029520
9029530
9029540
9 29550
9029560
9029570
9029580
9029590
9029600
9 29610
9029615
9029620
9029630
9029640
9029650
9029660
9 29670
9029680
9029690
9029700
9029710
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$IBFTC QUAD DECK,DEBUG

o0

200

204

210
215

220

225

250

SUBROUTINE QUAD

COMMON/BNXF/XIiX0yKCy XTPy FPATHy S, NQUAD +Ky 11

COMMON/BSTOSS/WSQ, ¥VSQ,COSN, ALPHA
COMMON/BNIF/10,1C,iTP,PHIC,USQO
DIMENSION A(70k, H{70)
REAL INTGRL
DATA (A(I),H{IX,I=1,28)/
1 7.74596669241483E-01, 5.55555555
1 8.868888888888889E-01, 8.61136311
1 3.39981043584856E-01, 6.52145154
1 2.36926885056189E-01, 5.38469310
1-0. E-00, 5.68888888
1 1.71324492379170E-01, 6.61209386
1 2.38615186083197TE-0le 4.67913934
1 1.29484966168870E-01, 7.41531185
1 4.058451513773976-01, 3.81830050
1 4.17959183673469E-01, 9.60289856
1 7.96666477413627E-01, 2.22381034%
1 3.13706645877887E-01y 1.83434642
1 9.68160239507626€E-01y 8.12743883
1 1.80648160694857E-01y 6.13371432
1 3.24253423403809€-01, 3.12347077
1 3.30239355001260E-01y 9.73906528
1 8.65063366688985E-01y 1.49451349
1 2.19086362515982E-01y 4.33395394
1 1.48874338981631E-01y 2.95524224
DATA {A(I),H(Ik,1=29,56)/
1 9.78228658146057E-01y 5.56685671
1 1.25580369464905€E-01, 7.30152005
1 5.19096129206812E-01y 2433193764
1 2.62804544510247E-01,-0.
1 9.815606342467T19E~-01y 4.71753363
1 1.06939325995318E-01, 7.69902674
1 5.87317954286617E-01, 2.03167426
1 2.33492536538355E-01, 1.25233408
1 9.84183054718588E-01, 4.04840047
1 9.21214998377280E-02, 8.01578090
1 6.42349339440340E-01, 1.78145980
1 2.0781604753688%9E~01, 2.30458315
1-0. E-00, 2.32551553
1 3.51194603317520€E~-02, 9.28434883
1 8.27201315069765E-01y 1.21518570
1 1.57203167158194E-01, 5.15248636
1 3.19112368927890E-01y 2.05198463
1 2.15263853463158E~01, 9.87992518
1 9.37273392400T06E-01, T7.03660474
DATA (A(I) H{I},1=57,70)/
8.48206583410427€~01, 1.07159220
1.39570677926154E-01, 5.70972172
3.94151347077%63E-01y 1.86161000
1.98431485327112E-01,-0.
9.89400934991650E-01, 2.71524594
6.22535239386480E-02, 8.65631202
7.55404408355003E-01y 1.24628971
1.49595988816577E-0Ly 4.58016777
2.81603550779259E-01y 1.82603415
1.89450610455068E-01/
EQUIVALENCE (N,NQUAD}
XOFA(A)=sXT+{XO-XI)xslle#A)®.5
INTGRL=0.0
INDKT= MOD(Ns2k+1
INDKT = le N IS EVEN
INDKT = 2o N [3 0DD
GO TO {204,210k, INDKT
MIN={N#N})/4 —~1
MAX=(N={N+2})/4 -2
G0 TO 215
MIN= (NeN-G)/4 +1
MAX= (N#{N+2)-11)/4
DO 220 I=1,2
DO 220 J=MIN,MAX
AlJ)= -A(J)
X=XOFALA(S))
TEST=USQO+PHI(X)
IFITEST.LE.O.) GO TO 1
F=SQRT(1.4VSQ/TEST)
INTGRL= INTGRL&H(J}*F
GO TO (2504225)y INDKT
X=XOFA(A(MAX+1Ek)
TEST=USQO+PHI( X}
IF(TEST.LEL.O.) GO TO 1
F=SQRT(1.+VSQ/TEST)
INTGRL= INTGRL*H{MAX+1)«F
INTGRL=45# ( XO-X1)#INTGRL
S=ABSUINTGRL)
RETURN
CONTINUE
5=0
RETURN
END

e e e et e

10029721
10029730
10029750
10029755
10029756
10029790
10029800
10030050

55556E-01+—-0. €-00,10030060

94053E-01,
62546E-01,
05683E-01,
88889E-01,
66265E-01,
T2691E-01,
99394E-01,

3.47854845137454E-01,10030070
9.06179845938664E-01,10030080
4.786286T70499366E-01410030090
9.32469514203152€-01,10030100
3.60761573048139E-01,10030110
9.49107912342759€-01,10030120
2.79705391489277€-01,10030130

05119€E-01,-0. €-00,10030140

97536E-01,
53374E-01,
95650E-01,
15740€E-02,
00590E-01,

1.01228536290376E-01,10030150
5.25532409916329E-01,10030160
3.62683783378362E-01,10030170
8.36031107326636E-01,10030180
2.60610696402935€6-01,10030190

40003E-01,-0. €-00,10030200

17172E-01,
50581E-01,
29247TE-01,
14753E-01/

61740E-02,
740439E-01,
91990E-01,

E~00,
65120E-02,
94305E-01,
23066E-01,
11469€E-01,
53160E-02,
33310£-01,
61946E-01,
55135E-01,
30874E-01,
635T4E-01,
87903E-01,
58154€-01,
21296E-01,
20485€E-01,
81080E-02/

67172E-01,
0853%E-01,
15562E-01,

E-00,
17540E-02,
87832E-01,
55534E-01,
57227€-01,
44924E-01,

6.66713443086880E-02,10030210
6.79409568299024E-01,10030220
2.69266719309996E-01,10030230
10030240
100306250
8.87062599768095E-01,10030260
1.86290210927734E-01,10030270
2.69543155952345E-01,10030280
2.72925086777901E-01,10030290
9.04117256370475E-01,10030300
1.60078328543346E~-01,10030310
3.67831498998180E-01,10030320
2.49147045813403€-01,10030330
9.17598399222978E-01,10030340
1.38873510219787E~01,10030350
4.48492751036447E-01,10030360
2.26283180262897E-01,10030370
9.86283808696812E-01,10030380
8.01580871597600E-02,10030390
6.87292904811685€-01,10030400
1.85538397477938E-01,10030410
1.08054948707344E-01,10030420
3.07532419961170E-02,10030430
10030440
10030450
7.24417731360170E-01,10030460
1.66269205816994E-01,10030470
2.01194093997435€E-01,10030480
2.02578241925561E-01,10030490
9.44575023073233€-01,10030500
9.51585116824930E-02,10030510
6.17876244402644E-01,10030520
1.69156519395003E-01,10030530
9.50125098376370E~02,10030540
10030550
10029810
10029820
10029830
10029840
10029850
10029860
10029870
10029880
10029890
10029900
10029910
10029920
10029930
10029940
10029950
10029960
10029970
10029975
10029976
10029980
10029990
10030000
10030010
10030015
10030016
10030020
10030030
10030035
10030040
10
10030056
10030057
10030540



$IBFTC PHI DECK

FUNCTION PHI(Z}
COMMON/BPHI/NDEG,
LI=NDEG+]
P=B{LI)#Z+BINDEG)
D0 100 I=2, NDEG
Ld=LI-1

100 P=B(LJ)+ZsP
PHI=P
RETURN
END
$IBFTC BPHI DECK

FUNCTION DPHI(I)

8{20) yNDPHI,ADPHI(20) yNDDPHI

COMMON/BPHI/NPHI APHI(20) ¢NDEG,

LI=NDEG+1
P=B{L1)#Z+B(NDEG)
DD 100 I=2, NDEG
Ld=LI-1

100 P=B(LJ)+I=P
DPHI=P
RETURN
END
$IBFTC DENS DECK

100

$IBFTC MINPHI

FUNCTION DENS(1)

COMMON/BCHEB/X(43),8(21),ERROR

COMMON/BCHEB2/111
NDEG=LI-1
P=B(LI)

D0 100 I=1,NDEG
Ly=LI-1
P=B({LJ}+ZsP
DENS=P

RETURN

END

SUBROUTINE MINPHI

COMMON/BMIN/XMEN, PHIMIN, IMIN, TPHID{33) ¢ TPHIX(1026) yA,B+C,DELXJEN

DEBUG, DECK

COMMON/BCHEB/N1+X(21)«DUMMY(43)

DATA N/1024/
PHIMIN = O

IMIN=1

EN=N

DELX = 1./FLOAT(N)
D0 1 I=1,N1

TPHID(I) = PHILX(I))

M = N+1

TPHIX(1l) = 0

D0 2 I=24M
U=DELX#FLOAT{I-1)
FPHIXLI) = PHICU)

IF (PHIMINLLT.TPHEX{I)) GO TO 2

PHIMIN = TPHIX{I)
IMIN = I
CONTINUE

XMIN=DELX#*FLOAT(IMIN~-1)

DEBUG XMINsPHIMIN
RETURN
END

B(20) ,NDDPHI

11030571
11030580
11030590
11030600
11030610
11030620
11030630
11030640
11030650
11030660
11030670

12030681
12030690
12030700
12030710
12030720
12030730
12030740
12030750
12030760
12030770
12030780

13
13

30791
30800

13030810
13030815
13030820

13
13

30830
30840

13030870
13030880

13

30890

13030900
13030910

14

14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14

00010
00020
00030
00040
00050
00060

0065
00070
00080
00090
00100
00110
00120
00130

0140
00150
00160
00170
00180
00190

0200
00270
00320
00350
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$IBFTC XIC DECK

10

11

20
30

40
50

60

61

SUBROUTINE xIC
COMMON/BSTODSS/HSQyVSQsCOSN, ALPHA
COMMON/BNIF/1Q,1C,1TP,PHIO,USQO
COMMON/BNXF/XODp XF 9 XCo XTP o FPATHy Sy NQUAD +Ko 11
COMMON/BMIN/XMEN, PHIMIN, IMIN; TPHID(33) 4 TPHIX(1026) ,A,8,C,DELX4EN
DIMENSION I{3)4DSX{3)
COMMON KNTRaN{X1}
KNTR=KNTR+1

i11)=10

1FF=EN*XF#1.5

F=FPATH

Q=VSQ/USQ
DSX{1)=SQRT(1.+Q}
M={IFF-1(1))/4
IF({IABS(M).EQ.0) GO YO 30
MM=ALOGLO(Q)

MN=2##{4~-MM)

IF{M.GToMN} M=MN
IF{MM.GT.4) M=1

EM=M

H=ABS{EM®DELX/3.)

DO 11 J=2,3

=1 (J=1)+M

14=10J)

Q=USQO+TPHIXA1Y)

Q=VSQ/u

IF(Q.LT.0.) GO TO 61
DSX{JI=SQRT{1.+Q)
S3=H#L{DSX(1)}+4,#DSX(2)+DSX(3))
Y=F-5§8§

IF(YeLT.0.) GO TO 20
Hu)=1(3)

DSX{1)=08x(3)

F=Y

60 10 10

IFF=1(3)

G0 TO 10

M={IFF-1(1))/2
IF(IABS(M}.EQ.0) GO TO 60
[E2)=1(1)+M

12=1{2}

Q=USQO+TPHIX{ 12}
DEX{23=SQRT(1.4VSQ/Q)}
EN=M

H=ABS{EM#DELX%,.5)
SS=H=(OSX{1)+038X{2))
Y=F-S§

IF(YeLT.0.)GO 10 40
1H1)=112)

DSX(1)=D5Xx(2)

F=Y

G0 TO 30

IC=1(2)
XC=DELX#FLOAT(¥C-1}
RETURN

IC=IFF

G0 70 50

IC=10

RETURN

ENC

$IBFTC XxITP DECK

& own

[ RV ]

SUBROUTINE XITp
COMNON/BSTOSS/¥SQ,VSQeCOSN, ALPHA
COMMON/BNXF/ X0y XF o XCo XTPyFPATH,SyNQUAD K, I I
COMMON/BMIN/ XMEN, PHIMIN, IMIN, TPHID{33), TPHIX(1026)4A,8,C,DELX+EN
COMMON/BNIF/1041C, ITP,PHIO,USQOD
11=EN#X0+#1l.5

12=IMIN

M=(12-11)/2

IF{M.EQ.0) GO TD 5

I=11+M

TEST=USQO+TPHIX( I}

IF(TEST)I2¢4+3

i2=1

GO TO 1

11=1

G0 TO 1

ITP=]

GO T0 6

11P=11

XTP=DELX«FLOAT(I-1)

DIF(KeEQe1ANDoIIoLE-S? DEBUG ITP,USQOe TPHIX{ITP~1),TPHIX(ITP)},
1TPHIXLITP+1)

RETURN

END

0000
0010
0020
0030
0040
0050
0055
0060
0100
0110
0120
0130
0l44
0146
0150
0160
0162
0164
0166
o167
0170
0180
0190
0200
0205
0206
0208
0209
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0335
0340
0344
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0560
0565
0570
0680
0690
0700

0000
0010
0020
0030
0050
0040
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280



$IBFTC CHEBY DECK

[+

C CHEBYSCHEV

C

10

17
15
20

25
40

70

100

104

129

130

133
135

140

11

1000

2

SUBROUTINE CHEBY(MOVE)

DIMENSION TRNMAT(21,21),X(21),SuB(11,11),

UP(11)sUPPLLL)9yAPP(11),AP(11),ASUBNI{21},COEFS(21},Y(21)

COMMON/BCHEB/ N1,X,YoCOEFS,EPS

COMMON/BPHI/NPHI, A{20) NDPHI, AI{20),NDDPHI

COMMON/BCHEB2/N2
DOUBLE PRECISIGON PIl,THETA,PION
DATA P1/3.1415926535897932/

DATA TRNMAT{141),TRNMAT(142),TRNMAT(2,2)/Les=10e42./

EQUIVALENCE (NR1,sN1)

GO0 TO (10,100)+MOVE

N=N1-1

NEN = N+N

NPLUSZ = N+2

M = N/2

MP1 = M+l

MP2 = M+2

EN=N

PION=PI/EN

00 15 I=1,NP1

THETA = (l. - FLOAT{I-1)/EN)=*P]
X(11=DCOS(THETA)
X{I)=(X(I)¢1l.)u.5

CONTINUE

DO 25 I=3,NPl

TRNMAT (l,1) = -TRNMAT(1l,I1-1)
DO 25 J=2,1

TRNMAT({Jy 1) = 4.#TRNMAT{J~1,1-1)-2.=TRNMAT{J,I-1)-TRNMAT(J,]1-2)

L=MP]
DO 70 I=1l.L
DO 70 J=1,L

SUB(Isd) = DCOS(FLOAT((J-1)#(I-1)) e PION)

RETURN

NP1 = NP1

UP(L1} = Y(NPL)-Y(L)

UPP{Ll) = Y{NPLY+Y{1l)

MOG=M~1

DO 104 I=1,M0G

NPLIMI = NP1-1

UPP(I+1) = (YINPLIMI)+Y(I+1))#2.0
UP{I+#1) = (Y(NPRIMI)-Y(i+1))=2,0
UPP{MPL) = 2.0«Y(MPL).

DOLl I=lsbs2

APP(1)=0.

APLI)=0.

DO 2 J=1,L,2
APPLI)=APP{TI)+3UB(1,J)=UPP(J)}
DO 1 J=2,1,2

AP(I) =AP(I) + SUBLI,Ji=UPP(J]}
DG 3 I=24Ls2

AR(I)=0.

APP(I)=0.

DO 4 J=1lsL,2
APP({L)=APP{1)+SUB(I,J)e UP(J)
DO 3 J=2,L,2

APLI) =APLI) + SUBL{I.J)= UPLJI)
DO 130 I=1.MP1

ASUBNEI) =(APPUI)+AP(I))/EN
INDICE= NPLUS2-I

ASUBNI( INDICE)=CAPP(I)-AP(I))}/EN
ASUBN{1) = ASUBN(1})/2.0
ASUBN{NPL) = ASUBN(NP1)/2.0

DO 135 I=14NP1

IF(ABS(ASUBN(IF) -£PS) 133,135,135
ASUBNI(I)=0.0

CONTINUE

DO 140 1I=1sNPL

COEFS(I) = 0.

DO 140 J=1,N2

COEFS{1) = COEFRS(I)}+TRNMAT(I,J)*ASUBN(J)
L=N1#1

L=tL-1

IF(COEFS(L).EQ.0.) GO TO 11
NDOPHI=L-1

RETURN

END

POLYNQMIAL FIT TO SAMPLE DENSITIES FROM ITER SUBROUTINE

17031301
17031310
17 31315
17 31316
17 31317
17031340
17031350
17031360
17031370
17031370
17 31378
17 31379
17 31380
17031400
17031410
17031420
17031430
17031440
17031450
17031460
17031470
17 31480
17 31490
17031500
17 31510
17 31520
17 31540
17031550
17031570
17031580
17031590
17031600
17031660
17031670
17031680
L7 31690
17 31700
17031710
17031720
17031730
17031740
17031750
17031760
17031770
17031780
17031790
17031810
17031820
17031830
17031840
17031850
17031860
17031870
17031880
17031890
17031900
17031910
17031920
17031930
17031940
17031970
17031980
17031990
17032000
17032010
17032020
17032030
17032050
17032060
17032070
17032090
17032100
17032110
17032120
17032140
17032150
17032160
17032170
17032260
17032270
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$IBFTC COEF
SUBROUTINE COEF(MOODE)

COMMON/BCHEB2/N2

COMMON/BPHI/NPHIAPHI(20) yNDPHI,ADPHI(20) 4 NDEN
COMMON/BCHEB/NL,X(42),COEFS(22)

COMMON/BMAIN/ CONST,VOLT(20),CURRNT(20)

DATA KNTR/0/
GO TO {1,2,3)4MODE

C

DECK

MODE 1 = READ INJTIAL APHI(2),N1,COEFS

1 CALL BCREAD(X{41),COEFS(11))
APHI(2)= X(41)
NDPHI=X{42)

RETURN

MODE 2 = COMPUTE COEFFICIENTS OF PHI AND DPHI
2 IF(KNTR.NE.O) NDPHI=N2

NPHI=NDPHI + 1

NDEN =NDPHI - 1

APHI{2)=VOLT(20)

D0 20 I=1+NDPH}

APHI(1+2) = CONST»COEFS{I)/FLOAT(I#{(I+1))
20 APHI(2)=APHI{2)-APHI{1+2)

IF(KNTR.EQ.O0) APHI{2)=A

KNTR=1

DO 21 I=14NPHI
21 AQPHILI)= APHIQI+1}=FLOAT{I)

RETURN

MODE 3 =

RETURN
END

$IBFTC PLOT
SUBROUTINE PLOT

C
C

PRINT

COEFS

PUNCH APHI(2),N1,COEFS
3 WRITE(6,30)(COEFS({I)yI=14N1)
30 FORMAT(1HO, 5
Xt41l)=APHI(2)

X(42)=N2
CALL BCDUMP(X{41),COEFS(11))

DECK

HCOEFS/1H 48F15.6/1H 43F15.6)

PLOTS OF FINAL DENSITY AND POTENTIAL DISTRIBUTEONS
COMMON/BITER/NO,KI
COMMON/BCHEB/NL,U(21),V(21),COEFS{21),+ERROR
COMMON/BPHI/NPHI,APHI{(20)NDPHI,AB(21)}
COMMON/8STOSS/USQsVSQyCOSNyALPHA
COMMON/BMAIN/ CONST,VOLT(20),CURRNT(20}

DIMENSION PDULL)PP(LL1}4X1(26)4X2(26),D(26),PH(26)
DATA PD/26¢106954910090492.9-20000.9500094050091./

DATA PP/264940a95¢110030495¢9-200cr40e14e90erle/

DO 1 I
X1{1}
x2(1)

1426
«04 »
X1{1I)

FLOAT(I-1)

DOI)=-DENS(X1(}))

1 PH{I)= - PHL{XL(I)}
PP(7)= AINT(PHt26)3-1.
PP(T7)=10.#PP( T}

CALL SORTXY{DyX1y26)
CALL SORTXY(PHeX2426)
WRITE(642)

2 FORMAT(2HPT,
CALL PLOTXY{D,X1,118,PD)

WRITE(643)APHIt2) yCONSTyALPHA,NOyNI1,KI

3 FORMAT(2HPL,20X%, 29HAPHI{2),CONST,ALPHA,NO,N1,KI/

11HysELOelelHyy I691He 2 125,1Hy,12)
WRITE(6,4)

4 FORMAT(2HPT,
CALL PLOTXY(PHyX2,118,4PP)

WRITE(6,5)APHIB2) yCONST,ALPHA,NOyN1,KI

S FORMAT(2HPL, 20X, 29HAPHI{2),CONSTyALPHAyNOsNL,K1/

11Hy 9E1OelelHyy I691Hes 125 1Hys12)

RETURN
END

50Xy 30HELECTRON DENSITY DISTRIBUTION

58Xy 22HPOTENTIAL DISTRIBUTION )

)

1F5.2:1Hy4F7.2,

2F5.291HssFT 2,

19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
u9
19
19
u9
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

11

20

24

25

26
Q0027
00028
30

40

45

50

S&

55

56

60

65
00070
75

80

85

90

92

94

96

98
100
105
110
120
125
126
130
00135
00140
00145
00146
150
155

00011
00020
00023
00024
00025
00030
00040
00046
00045
00050
00060
00070
00080
00090
00160
00110
00120
00125
00126
00130
00140
00150
00160

20 0017

20
20
20
20
20
20
20
20
20
20

00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280



$IBFTC CUMVEL
SUBROUTINE CUMVEL

$IBFTC

210

211

P gt P et et et fuat ) pmt fued [k et jpd puot o et Pt

DECK

COMMON/BVEL/VEL(1024)

DATA NMC/1024/

DELX=1./FLOAT(NMC)

00 1 I=1,NMC

X=DELX#(FLOAT(§-1)+.5)

VEL{T)=-ALOGI X}
RETURN
END

QUADGM DECK

SUBROUTINE QUADGM

MGDIFIED GAUSSYMEHLER QUADRATURE

NUMERICAL INTEGRATION OF FOFX(X)/SQRT{X-X0) FROM

COMMON/BNIF/10¢IC,iTP4PHIOLUSQO

COMMON/BNXF/XF¢X19XCyX0

COMMON/BSTOSS/USQVSQyCOSNy ALPHA
DIMENSION Y{(33}k,A(33)

REAL INTGRL
DATA N/5/

DATA (Y(I1),ALI)y1I=1,33)/

0.56939116E-01,
0.86949939E-00,
0.27618431E-00,
0.92215661€E-00,
0.18783157E-00,
0.74833463E-00,
0.15683407E-01,
0.34494238E-0Q0,
0.81742801E-00,
0.11675872E-01,
0.26548116E-00,
0.68426202E-00,
0.97275575E~-00,
0.79300560E-01,
0.38177105E-00,
0.74931738E-00,
0.97891421€E-00,

FOFX{X,Y)=SQRTULABS( X-X0)

0.93582787E-00,
0.34264898E-00,
0.62741329€E-00,
0.20245707E-00,
0.53853344E-00,
0.29890270E-00,
0.49829409E-00,
0.40633485E-00,
0.21387865E-00,
0.43052771€-00,
0.37107680E-00,
0.24303714E-00,
0.70238921E-01,
0.36520683E-00,
0.29919198E-00,
0.19031702E-00,
0.54304919€E-01/

XOFY{Y)=XO+{ XF=XO)}»Y

INTGRL=0.

MIN=N#{N~-1)/2 -2

MAX=MIN+N-1

DO 210 J=MIN,MAX

X=2XO0FY(Y(J))
Z22USQO+PHI( X)

I1f(Z.LE.O.) GO TO 211

F=FOFX{(XsZ)

INTGRL=INTGRL+A(J)*#F
INTGRL=SQRT(ABS(XF-X0)31#INTGRL

S=ABS{INTGRL)
RETURN

§=0

RETURN

END

¢+ FPATH, Sy NQUAD

1Ky Il

0.43719785E~-00,
0.33648268E-01,
0.63467748E-00,
0.22163569E-01,
0.46159736E-00,
0.94849393E~-00,
0.13530001E-00,
0.59275013€-00,
0.96346128E-00,
0.10183270E~-00,
0.47237154E-00,
0.86199133E-00,
0.90273770E-02,
0.20977937E-00,
0.57063582E-00,
0.89222197€-00,

#(1.+V5Q/Y))

X0 7O XF

0.72152315E-00,
0.72536757E-00,
0+44476207E~-00,
0.59104845E~-00,
0.43817273E-00,
0.13334269E-00,
0.46698507E-00,
0.32015666E~00,
0.94350673E~01,
0.41039693E-00,
0.31440633E-00,
0.16031617€E-00,
0.37890122E~00,
0.33831304E~-00,
0.24925794E~00,
0.12450705E-00,

00010
00020
00030
00035
00040
00050
00060
00070
00080
00090

GMQUOO030
GMQUOO040

GMQUOO050
GMQUO060
GMQUO062
GMQUOO070
GMQUOO080
GMQUO090
GMQUO100
GMQUO110
GMQUO120
GMQUO130
GMQUO 140
GMQUO150
GMQUO160
GMQUO1L170
GMQuUO1l80
GMQUO190
GMQUO200
GMQUO210
GMQuO0220
GMQUO0230
GMQUO0240
GMQUO242
GMQUO0250
GMQUO260
GMQUO2T70
GMQUO0280
GMQUO0290
GMQUO300
GM 0310
GM 0312
GM 0314
GMQU0320
GMQuO0330
GMQuU0332
GMQUO340
GMQUD342
GMQUO 344
GMQUO350
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APPENDIX D

SYMBOLS

[All dimensioned variables in cgs-esu units. ]

coefficients, eq. (24)

dimensionless constant,
eqs. (6), (8), and (10)

coefficients, eq. (25)

expectation value of [ |,
eq. (A4)

electronic charge, eq. (7)

marginal distributions,
eqs. (12) and (13)

probability distribution
function, eq. (A2)

dimensionless velocity
distribution function,

eq. (4)
function of random vari-
able X, appendix A
sample mean of g(x),
eq. (A20)
electron current to col-
lector, eq. (22)
electron emission cur-

rent, eqs. (8) and (22)

Boltzmann's constant,
eq. (5)

interelectrode separation,

eq. (2)

dimensionless path length,

eq. (3)

=

=

P[]
p(r)

a 4 W

[=1

Y (x)

dimensionless path length for col-
lision, eq. (2)

mass of electron, eq. (5)

number of electrons striking col-
lector, eq. (22)

total number of histories, eq. (22)

dimensionless electron density,
eq. (6)
electron density, eq. (7)

electron density of emitted flux,
eq. (7)
probability of [ ], appendix A

uniform probability distribution
function, eq. (A7)

uniformly distributed random
numbers

path length, eq. (3)
emitter temperature, eq. (5)
random variable, appendix A

dimensionless x-component of
velocity, eqs. (5) and (9)

initial velocity, eq. (20)

dimensionless velocity component
transverse to the x-direction

potential distribution




Vs Vyr Vg

X,Y

initial velocity of monoener-
getic emission, eq. (9)

components of velocity
random variables, appendix A
spatial coordinate, eq. (7)

dimensionless spatial coordi-
nate, eq. (7)

location of collision, eq. (29)

location of last event,
eq. (29)

dimensionless reciprocal
mean free path, eq. (3)

flux to collector
emitted flux

scattering angle, eq. (1)

[]
{}

capture angle, eq. (34)
mean free path, eq. (3)

theoretical standard deviation,
eq. (A20)

sample deviation, appendix A

standard deviation of current
to collector

dimensionless potential distribu-
tion: thermionic emission,
eq. (7); monoenergetic emis-
sion, eq. (9)

solid angle, eq. (1)

integral value

sequence of terms { }, appen-
dix A
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